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Three-dimensional highly resolved simulations are presented for cylindrical density
currents using the Boussinesq approximation for small density difference. Three
Reynolds numbers (Re) are investigated (895, 3450 and 8950, which correspond
to values of the Grashof number of 105, 1.5 × 106 and 107, respectively) in order to
identify differences in the flow structure and dynamics. The simulations are performed
using a fully de-aliased pseudospectral code that captures the complete range of time
and length scales of the flow. The simulated flows present the main features observed
in experiments at large Re. As the current develops, it transitions through different
phases of spreading, namely acceleration, slumping, inertial and viscous. Soon after
release the interface between light and heavy fluids rolls up forming Kelvin–Helmholtz
vortices. The formation of the first vortex sets the transition between acceleration and
slumping phases. Vortex formation continues only during the slumping phase and the
formation of the last Kelvin–Helmholtz vortex signals the departure from the slumping
phase. The coherent Kelvin–Helmholtz vortices undergo azimuthal instabilities and
eventually break up into small-scale turbulence. In the case of planar currents this
turbulent region extends over the entire body of the current, while in the cylindrical
case it only extends to the regions of Kelvin–Helmholtz vortex breakup. The flow
develops three-dimensionality right from the beginning with incipient lobes and clefts
forming at the lower frontal region. These instabilities grow in size and extend to the
upper part of the front. Lobes and clefts continuously merge and split and result in
a complex pattern that evolves very dynamically. The wavelength of the lobes grows
as the flow spreads, while the local Re of the flow decreases. However, the number
of lobes is maintained over time. Owing to the high resolution of the simulations, we
have been able to link the lobe and cleft structure to local flow patterns and vortical
structures. In the near-front region and body of the current several hairpin vortices
populate the flow. Laboratory experiments have been performed at the higher Re and
compared to the simulation results showing good agreement. Movies are available
with the online version of the paper.

1. Introduction
Density currents are flows driven by horizontal pressure gradients generated by the

action of gravity over fluids with different density (Allen 1985; Simpson 1997). In

† Author to whom correspondence should be addressed.



438 M. I. Cantero, S. Balachandar and M. H. Garcia

many applications and laboratory experiments the current is channelized and confined
to flow between parallel lateral walls. In such situations, if the viscous effect of the
lateral walls can be ignored, the current moves as a statistically two-dimensional flow
with a nominally planar front (planar current). There are a number of applications,
such as the release of heavy gas into an open space, the collapse of an axisymmetric
volcanic plume, or a point discharge into a lake or ocean, in which the density
current is not channelized and is allowed to spread out over the entire horizontal
plane. In such situations, the current moves as a statistically axisymmetric flow with
a nominally cylindrical front (cylindrical current). Another example of a cylindrical
current is a directed release where the current does not spread all around, but forms
a conical planform. Density currents in such sector-shaped geometric tanks are often
studied in the laboratory, as a proxy for the full cylindrical current, because of their
simplicity. More examples of engineering, environmental and geological applications
can be found in the books by Allen (1985) and Simpson (1997).

The dynamics of planar density currents is reasonably well understood (see for
example Marino, Thomas & Linden 2005). Planar currents form a coherent front and
a relatively long highly turbulent body behind the front (Cantero et al. 2007). As the
currents spread, their planform increases linearly with front location and they pass
through different phases, namely slumping, inertial and viscous (Huppert & Simpson
1980). On the other hand, as cylindrical currents spread the planform increases
quadratically, which induces a faster decay of the current intensity. The concentrated
vorticity at the head of the cylindrical current initially intensifies as the current flows
out due to intense vortex stretching (Patterson et al. 2006), and eventually the currents
present a highly turbulent front and a relatively shallow calm body (Cantero et al.
2006). Despite these fundamental differences, cylindrical currents are also thought to
pass through a similar sequence of different phases of spreading as for planar currents
(Huppert & Simpson 1980; Ungarish & Zemach 2005; Patterson et al. 2006).

Several experiments have been performed to study the dynamics and structure of
planar density currents. Allen (1971) and Simpson (1972) have devoted great effort
to the study of the lobe-and-cleft pattern observed at the front of density currents.
Simpson & Britter (1979) studied the dynamics of the head of a gravity current.
Huppert & Simpson (1980), Rottman & Simpson (1983) and more recently Marino
et al. (2005) have studied the different phases of spreading of a current produced by
the release of a fixed volume of denser fluid in a lighter ambient. Garcı́a & Parsons
(1996) and Parsons & Garcı́a (1998) have studied the similarity of planar density
currents fronts, to mention but a few.

In comparison, experimental investigation of cylindrical currents has been relatively
limited. The earliest work to study the spreading rate of cylindrical currents was
by Martin & Moyce (1952). Bonnecaze et al. (1995) analysed the spreading rate
and deposition patterns of cylindrical particle-driven gravity currents. Alahyari &
Longmire (1996) performed particle image velocimetry of a cylindrical gravity current
and described the vortex dynamics in the early stages of the flow. Hallworth et al.
(1996) studied experimentally the ambient fluid entrainment in two-dimensional and
axisymmetric currents. Hallworth, Huppert & Ungarish (2001) studied experimentally
the effect of rotation on the propagation of cylindrical currents. Recent experiments
in a sector-shaped tank for varying fractional depth of release have been reported by
Patterson et al. (2006).

A number of three-dimensional highly resolved simulations have been performed
for planar gravity currents at modest Reynolds numbers (Re) (Lee & Wilhelmson
1997a , b; Härtel, Meiburg & Necker 2000b; Necker et al. 2002; Özgökmen et al. 2004;
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Cantero et al. 2007). Such detailed information is missing for cylindrical currents and
would be very useful. For example, linear stability analysis of a planar front of a
gravity current has shown that the spanwise wavelength of the most unstable mode,
which corresponds to the lobe-and-cleft pattern, will increase with decreasing Re
(Härtel, Carlsson & Thunblom 2000a). Consistent with this theoretical prediction, as
the planar current advances forward, its instantaneous Re decreases and a coarsening
of the lobe-and-cleft structure is observed (Cantero et al. 2007). In the case of
a cylindrical current, the instantaneous Re of the current decreases more rapidly
due to the quadratic increase in planform. However, as the current flows out its
circumferential length increases. An interesting question that arises is whether the
number of lobe-and-cleft structures increases or decreases over time.

In this work we centre our attention on the release of a fixed cylindrical volume
of homogeneous fluid in a slightly less dense environment, and on the time evolution
of the resulting cylindrical current. We perform highly resolved simulations of three-
dimensional cylindrical currents at three different Re, document the results and
compare them to corresponding experimental observations.

2. Numerical formulation
We consider flows in which the density difference is small enough that the Boussinesq

approximation can be adopted. With this approximation, density variations are only
incorporated in the buoyancy term. The dimensionless governing equations are

Dũ
Dt̃

= ρ̃ e − ∇p̃ +
1

Re
∇2ũ, (2.1)

∇· ũ = 0, (2.2)

∂ρ̃

∂t̃
+ ∇· (ρ̃ ũ) =

1

ScRe
∇2ρ̃. (2.3)

Here D/Dt̃ indicates the material derivative, ũ is the fluid velocity, p̃ is the pressure,
ρ̃ is the density, and e is the unit vector pointing along the direction of gravity.

We have adopted the height of the fluid layer, H , as the length scale, and U =
√

g′H
as the velocity scale. Here g′ = g(ρ1 − ρ0)/ρ0, where g is the acceleration due to
gravity, ρ1 is the density of the denser fluid and ρ0 is the density of the ambient
fluid. Consequently, the time scale is H/U . The dimensionless density and pressure
are given by

ρ̃ =
ρ − ρ0

ρ1 − ρ0

, p̃ =
p

ρ0 U 2
. (2.4)

The two dimensionless numbers in equations (2.1)–(2.3) are, respectively, the Reynolds
and Schmidt numbers, defined as

Re =
UH

ν
=

√
g′ H 3

ν
and Sc =

ν

κ
, (2.5)

where ν is the kinematic viscosity and κ is the diffusivity of temperature or chemical
species producing the density change. A cylindrical volume of height H (full depth)
and radius r0 containing the heavier fluid is released into the surrounding lighter fluid.
Figure 1 shows the nomenclature used in this work and the initial setting of the flow.
In this work we will concentrate on the condition r0 = H .

The computational domain is a rectangular box of size L̃x × L̃y × L̃z. Since the

current spreads radially outward along the entire (x̃, ỹ)-plane we choose L̃x = L̃y .
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Figure 1. Sketch of a cylindrical density current showing the main features of the flow and
nomenclature for this work.

Periodic boundary conditions are employed along the (x̃) and (ỹ) directions for all
variables. At the top and bottom walls no-slip and zero-gradient conditions are
enforced for velocity and density, respectively. The planform of the periodic box is
taken to be 15 × 15 in order to allow unhindered development of the current for
sufficiently long time. Härtel et al. (2000b) indicated that for planar currents the
interaction of the advancing front with the boundary becomes important when the
front reaches within one depth scale of the boundary. This effect is expected to be
less significant for cylindrical currents (see Cantero et al. 2006). The flow was started
from rest with a minute random disturbance prescribed in the density field. The
details of the initial condition can be found in Cantero et al. (2006). The use of a
rectangular grid to solve a cylindrical problem may seem odd. However, a rectangular
grid provides a uniform resolution away from the centre of the domain, thus capturing
better the fine structures of the flow at the front (lobes and clefts). The governing
equations are solved using a de-aliased pseudospectral code whose details can be
found in Cantero et al. (2007).

In this work, three different Re are considered: Re = 895, 3450 and 8950. The
corresponding Grashof numbers, defined as Gr = g′ (H/2)3/ν2 are 105, 1.5 × 106 and
107, respectively. The intermediate Re corresponds to that considered by Härtel et al.
(2000b) in the planar configuration. With increasing Re the complexity of the flow
increases, and this requires increased resolution. The grid resolutions employed for the
three different simulations are 280 × 280 × 72, 512 × 512 × 110 and 880 × 880 × 180
and thus they involve 5.6, 28.8 and 139.4 million grid points. The numerical resolution
for each simulation was selected to have between 6 and 8 decades of decay in the
energy spectrum for all the variables. The time step was selected to produce a Courant
number smaller than 0.5. The simulation at Re = 8950 required about 1 month of
continuous run on 64 processors of the new SGI Altix 3000 (put to production
in April 2005 at the National Center for Supercomputing Applications (NCSA),
University of Illinois at Urbana-Champaign), about 70 Gb of RAM memory to run,
600 Gb of storage for raw data, and 18 Tb (18000 Gb) of storage for visualization
postprocessing by NCSA scientists.

By imposing symmetry along the x̃ = 0 and ỹ =0 planes the computational domain
and correspondingly the computational cost can be reduced by factor 4. Despite the
increased computational cost there are advantages with the larger domain. First, if
there are low-circumferential wavenumber (kθ = 1 or 2) instabilities in the propagation
of the front, such instabilities can only be captured in the larger domain, without
imposed symmetries. The present simulations will capture the low-wavenumber
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Figure 2. Flow visualized in one quadrant of the computational domain by isosurface of
ρ̃ = 0.15 for Re = 895, at two times. The head consists of two coherent anticlockwise-rotating
vortex rings marked A1 and A5 on the (x̃, z̃)-plane. The insets show a front view of the flow.

instabilities if they are present in a real system. Furthermore, we make sure that the
initial perturbation in the four quadrants is dissimilar, and consequently, the evolution
of the current in the four different quadrants, although statistically identical, is not
exactly the same. Thus, for the higher Re turbulent flows, we will have data over
the entire 360◦ degrees for more accurate extraction of the circumferentially averaged
statistics.

3. Results and discussion
3.1. Roll-up of the interface

3.1.1. Re = 895

After the release of the denser fluid, an intrusive front forms. Figure 2 shows the
structure of the current as visualized by a density isosurface of ρ̃ = 0.15 for the lowest
Re of 895. Note that the structure of the flow visualized by this isosurface does not
change substantially with the choice of ρ̃ (see for example figure 5a). The figure
shows only one quarter of the computational domain to allow better visualization of
the flow structures. Two different dimensionless time instances are shown, t̃ = 7 and
10. At both times a well-defined head of the current can be seen. The head initially
consists of a coherent anticlockwise rotating vortex ring (marked A1 on the x̃, z̃ plane
in figure 2) that forms first due to the roll-up of the interface shear layer between
the heavy and light fluids. As the front of the current progresses radially out, the
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Figure 3. Flow visualized in one quadrant of the computational domain by isosurface of
ρ̃ = 0.15 for Re = 3450, at two times. Four vortex rings form, marked A1, A2, A3 and A5 on
the (x̃, z̃)-plane. For this Re, the front shows a clear pattern of lobes and clefts. The insets
show a front view of the flow.

vortex ring A1 slightly lifts up above the ground and a new anticlockwise vortex ring
A5 (numbering will become clear below) forms ahead of it at about t̃ ≈ 5 when the
current is located at r̃ ≈ 2.7. At the earlier time of t̃ = 7 shown in figure 2, the presence
of the two different vortex rings, one behind the other, can be clearly observed and
together these two vortex rings form the distinct raised head of the current. At this
Re the currents remains axisymmetric at all times and the initial non-axisymmetric
disturbance introduced into the flow decays away.

3.1.2. Re = 3450

Figure 3 shows the structure of the current at the intermediate Re of 3450. At the
earlier time of t̃ = 7 a sequence of four vortex rings can be seen. The anticlockwise
vortex ring marked A1 is the first one to form at the interface. With increasing time
the heavy front propagates radially out, while the light front propagates back towards
the axis. Subsequent roll-up of the interface results in the formation of the vortex
ring A2. In the present case, the back propagating front reaches the axis by about
t̃ ≈ 3, after which the interface between light and heavy fluids increases only due to
the forward propagation of the heavy front. At the same time the interface begins to
roll up again to form the third vortex ring A3. These later vortices can be observed
to be progressively weaker than the first one. At the earlier time of t̃ = 7 the three
vortices A1, A2 and A3 are nearly equispaced. The formation of the vortex ring A5
downstream of A1 occurs at t̃ ≈ 4.5 when the current is located at r̃ ≈ 2.6 and will be
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discussed below in the context of the the higher Re case (see § 3.1.3). By about t̃ ≈ 10
the vortex rings A1 and A5 merge and form a single head of the current, which can
be observed at the later time of t̃ = 14 shown in figure 3. Also at this time, due to
their faster propagation, we observe that the combined vortex ring A1+A5 is farther
ahead of the weaker vortex rings A2 and A3. The dynamics of vortex propagation is
explored further for the larger Re case in the next subsection.

At Re = 3450 the initial disturbance introduced into the flow grows over time and
the flow quickly forms a lobe-and-cleft structure. The initial random disturbance
introduced at the interface includes a wide range of circumferential modes. It is,
however, clear from the figure that there is a preferred most amplified circumferential
mode of instability. At t̃ = 7 about 20 lobe-and-cleft structures can be observed within
the quadrant that is visualized, while at t̃ = 14 a slightly fewer number of lobe-and-
cleft structures are observed. Also, at early times (not shown here) the instability was
visually observed only at the head of the current, but at later times it can be observed
not only at the head, but also in the subsequent vortex rings (see inset for t̃ =7 in
figure 3). The lobes and clefts are observed to be reasonably well organized at the
earlier time shown in figure 3, while at the later time their structure is less regular,
suggesting the strong role of non-linearity. The height of the current is elevated only
at the location of the vortex rings. In between the vortex rings the current appears
to be relatively thin and calm, devoid of strong instabilities. The remnant heavy
fluid observed along the axis (x̃ = ỹ = 0) and near the top boundary are artifacts of
the no-slip boundary condition applied at the top boundary, but changing this to a
free-slip top boundary does not alter the physics of the current to be discussed in this
work.

3.1.3. Re = 8950

Figure 4 shows the time development of the flow structure for the highest Re
of 8950. Initially, the flow evolves as a nearly axisymmetric flow in which Kelvin–
Helmholtz rolls develop and form along the front and the body of the current. At
t̃ = 2.7 the nose of the current is slightly lifted away from the bottom wall and, as a
consequence of the no-slip condition, a layer of light fluid penetrates below the raised
nose resulting in unstable stratification. It can be observed that at this early time some
incipient lobes and clefts are starting to form. However, the three-dimensionality is
primarily limited to the nose of the current. A movie of the volumetric rendering of
ρ̃ for Re = 8950 is available with the online version of the paper (see movie 1).

The vertical location of the nose does not depend strongly on the particular value
of ρ̃ used to visualize the front as can be observed in figure 5(a). This figure shows
circumferentially averaged density contours (as defined in equation (3.1)) for t̃ = 5.3
and Re = 8950. The thick solid line indicates the contour of ρ̃ = 0.15, the dashed
lines mark the contours of ρ̃ between 0.01 and 0.35, and the dotted lines capture
the contours of ρ̃ =0.5 and 0.65. Figure 5(b) shows the streamline pattern of the
circumferentially-averaged velocity field at the front of the current for the same
conditions as figure 5(a). The flow direction in a frame of reference moving with the
front is indicated by arrows. The front of the current shows strong recirculation and
the stagnation point of zero shear stress on the bottom wall is marked. It is clear
that the location of the stagnation streamline does not coincide with the nose of
the current. Similar results have been reported by Härtel et al. (2000b) for planar
currents.

The roll-up process of the interface can be better observed from a plot of the
circumferentially averaged quantities. For any flow variable f , its circumferential
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Figure 4. For caption, see facing page.

average is computed as

f̄ (r̃ , z̃) =
1

2π

∫ 2π

0

f (r̃ , θ, z̃) dθ. (3.1)

In figure 6 circumferentially averaged velocity vector plots are presented at several
time instances. To allow better visualization of the rolled-up vortices, the front velocity
has been subtracted from the circumferentially averaged velocity field, which is plotted
together with contours of circumferentially-averaged density. The interface between
the heavy and light fluids is taken to be marked by ρ̃ = 0.15. At the earliest time
shown (t̃ = 1.77), only the incipient roll-up of the anticlockwise vortex ring A1 can
be seen. By t̃ =2.7 the back propagating front has almost reached the axis and, in



High-resolution simulations of cylindrical density currents 445

0.5

0

t  = 21˜

z̃

1
2

3
4

5
6

0
1

2
3

4
5

6

x̃ ỹ
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ỹ

Figure 4. Flow visualized in one quadrant of the computational domain by isosurface of
ρ̃ = 0.15 for Re = 8950, at five times. Five vortex rings develop A1, A2, A3, A4 and A5 on the
(x̃, z̃)-plane. Three-dimensionality develops and destabilizes the vortex rings in the azimuthal
direction which break up to smaller scale turbulence. Eventually, the turbulence decays and
the body of the current becomes a calm region where most of the flow appears as interface
waves. For this Re, the front instabilities of the initial condition grow very rapidly with time
and form a pattern of lobes and clefts. The insets show a front view of the flow. See movie 1
available with the online version of the paper.

addition to the initial vortex ring A1, two additional anticlockwise vortex rings A2
and A3 can be observed upstream (see also figure 4). Also, as a consequence of the
bottom no-slip boundary condition, the strong anticlockwise vortex ring A1 results
in the formation of a clockwise-rotating vortex ring C1 closer to the bottom wall. At
t̃ = 3.54 the pair of vortex rings A1 and C1 form the head of the current. Vortex rings
A2 and A3 have merged and have resulted in the formation of the clockwise vortex
ring C2. A new rolled-up anticlockwise vortex A4 and the associated clockwise vortex
ring C3 can be seen as well. The resulting vortex ring structure and the interface can
be verified in figure 4. The presence of counter-rotating vortices has been observed in
cylindrical gravity currents in the experiments of Alahyari & Longmire (1996).

Figure 7 shows the near-bed (z̃ = 0.017) circumferentially-averaged radial pressure
gradient (dp/dr̃) for the case of Re = 8950 at t̃ = 3.54. At this time, three regions of
adverse pressure gradient (dp/dr̃ > 0) can be observed with peaks at 2.14, 1.27 and
0.63, which correspond very well with the location of the clockwise-rotating vortices
C1, C2 and C3, respectively (compare to the frame for t̃ =3.54 in figure 6). These local
adverse pressure gradients induce local boundary layer separation and the formation
of the clockwise-rotating vortices as postulated by Alahyari & Longmire (1996).
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Figure 5. (a) Circumferentially averaged density contours at the front of the current for
t̃ = 5.3 and Re = 8950. The thick solid line indicates the contour of ρ̃ = 0.15. The contours of
ρ̃ between 0.01 and 0.35 are indicated by dashed lines and the contours of ρ̃ = 0.5 and 0.65
by dotted lines. Observe that the shape of the front as indicated by contours of ρ̃ does not
depend significantly on the particular value as long as it is in the range between 0.01 and 0.35.
(b) Streamlines of the circumferentially averaged velocity field at the front of the current for
the same flow as (a). The stagnation point of zero shear stress on the bottom wall is marked
by a black dot. It is clear that the location of the stagnation streamline does not coincide with
the nose of the current.

By t̃ = 4.67 the vortex ring C1 has lifted the dominant vortex ring A1 further away
from the bottom wall, lowering the outward propagation velocity of this structure.
The front thus advances faster than the vortex ring A1 and results in the formation
of a new anticlockwise vortex ring A5, downstream of A1. For this Re the formation
of A5 occurs at t̃ ≈ 4.25 when the current is located at r̃ ≈ 2.6. This mechanism is
the cause of the vortex ring marked A5 in the two lower Re cases as well. The
azimuthal stretching of the vortices has a stabilizing effect and the coherence of the
Kelvin–Helmholtz vortices is maintained until t̃ ≈ 4.5 when the current is located at
r̃ ≈ 2.7. At this time instabilities grow and destabilize the Kelvin–Helmholtz rings A1,
A2+A3 and A4 which eventually break up to smaller scale turbulent structures. As
will be shown later, this time corresponds to the departure of the current from the
slumping phase. The location of the front at the time of the transition is in good
agreement with the findings of Patterson et al. (2006).

By t̃ = 7 in figure 4, the vortex rings have lost their azimuthal coherence and
present a wide range of scales. Also a fully developed pattern of lobes-and clefts
can be observed at the front. At t̃ = 21 only A5 that forms the front of the current
and the remnant of the original vortex ring A1 can be observed. Despite the decay
of the vortex rings, the lobe-and-cleft pattern is still present. The level of turbulence
has decayed substantially and only the front of the current presents some vortical
structures. The body of the current has become a relatively calm region, where most
of the flow features appear as interfacial undulations.
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Figure 6. Flow field visualized by circumferentially averaged velocity vectors. To allow better
vortex visualization, the nose velocity has been subtracted in each frame. The current interface
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help visualize the current structure.
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Figure 7. Near-bed (z̃ =0.017) mean radial pressure gradient for Re = 8950 at t̃ = 3.54. The
locations of the peaks are 2.14, 1.27 and 0.63, which correspond very well with the location
of the clockwise-rotating vortices C1, C2 and C3, respectively. Compare to the location of the
front and centre of the vortices in the frame for t̃ = 3.54 in figure 6.
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Figure 8. Propagation velocity of vortex ring A1 for Re = 8950. Solid line: circulation (CA1),
dash-dot line: self-induced velocity (vrA1), dashed line: radial velocity at the vortex ring core
(urA1), and dotted line: front velocity (uF ).

3.2. Self-induced motion of the vortex rings

An isolated vortex ring has a propagation velocity due to self-induced motion,
whose magnitude depends on the circulation of the vortex cross-section and the
diameter of the ring. In the present case this self-induced motion will tend to propel
the anticlockwise-rotating vortex rings towards the wall, and the clockwise-rotating
vortex rings away from the wall. The magnitude of this self-induced motion is quite
weak and can be ignored since the diameter of the rings is much larger than the
diameter of the vortex cross-section. In other words, the curvature of the vortex rings
does not play a major role.

A more significant effect arises from the interaction of the vortex rings with the
wall, whose inviscid effect can be taken into account through image vortex rings. The
image of an anticlockwise-rotating vortex ring across the bottom wall is a clockwise-
rotating vortex ring whose interaction will tend to induce an outward radial motion. In
contrast, the interaction of a clockwise-rotating vortex ring with the wall will tend to
move it radially inwards. The cross-section of the vortex rings can be approximated as
a Burgers vortex with a Gaussian vorticity distribution (Wu, Ma & Zhou 2006), from
which the size and circulation of the vortex cross-section can be evaluated. Figure 8
shows the time evolution of circulation of the anticlockwise vortex A1, CA1 (solid line).
The vortex circulation initially increases due to azimuthal vortex stretching (see § 3.4),
but begins to weaken after t̃ > 3.4, with an brief period of small intensification around
t̃ ≈ 5.2. The corresponding size of the vortex cross-section remains approximately 0.08
dimensionless units over this period.

Assuming the vortex ring to be a line vortex, a crude estimation of the radial
induced velocity from the image vortex can be obtained as vrA1 = CA1/(4 π z̃A1), where
z̃A1 is the vertical location of the vortex ring A1 core above the bottom wall. This
induced radial outward velocity is also shown in figure 8 with a dash-dot-dot line.
The induced velocity approximately follows the time evolution of circulation, and
the differences are due to time variation in the vertical location of the vortex ring
above the wall, as can be observed in figure 6. Figure 8 also presents the actual
radial velocity at the vortex ring core, urA1 (dashed line), and the front velocity of
the current, uF (dotted line). In general, urA1 is lower than uF . As will shown later in
§ 3.8, the height of the current is typically larger at the vortex ring locations and as a
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result the local propagation velocity is lower. Note that the propagation of a density
current is due to lateral pressure difference arising from density stratification. The low
dynamic pressure associated with a coherent vortex core reduces this lateral pressure
gradient and lowers the local propagation velocity. Interestingly, at about t̃ ≈ 3.5 when
the vortex ring A1 has reached its peak intensity, urA1 increases and is slightly larger
than uF , which signifies the potential role of induced vortex motion. The trajectories
of the vortices can be observe in a movie of the circumferentially-averaged density
field available with the online version of the paper (see movie 2).

The estimated vortex velocity vrA1 shown in figure 8 is likely to be overestimated.
The estimation above ignores the presence of the top wall. For the present case of
a vortex ring between two parallel walls a system of images must be considered.
The effect of the top wall is to oppose the effect of the bottom wall and reduce the
self-induced radial velocity. In figure 6 it can be seen that the vortices are typically
located closer to the bottom wall (z < 0.3) and thus the effect of the bottom wall can
be expected to be more than twice as strong as the top wall effect. The viscous effect
of the walls needs to be accounted for as well. Furthermore, the vortex rings are
not in isolation, the clockwise and anticlockwise vortex rings strongly interact among
each other. Despite these complexities, it is clear that self- and mutual interactions
between the vortex rings are an important ingredient, but this does not fully account
for their radial propagation.

3.3. Interface circulation estimate

The roll-up of the flow into coherent vortex rings is clearly associated with vorticity
at the interface. This process can be quantified by the integral of the azimuthal
component of vorticity in an area surrounding the interface (the shaded region S1 in
figure 1 for example). This is directly related to the circulation at the interface, Γθ , as
given by

Γθ =

∮
γ

u · ds =

∫
S

ω · dS, (3.2)

where ω = ∇ × u is the vorticity and the line integral is over the path γ surrounding
the surface S (marked by the dashed line and arrows in figure 1).

Figure 9(a) shows the evolution of the circumferentially averaged interface
circulation, Γ θ , for the case of Re =8950. At this higher Re the viscous effects
are reduced and attention can be focused on the effect of vortex stretching and
baroclinic production. The integral is taken through a path line surrounding the
interface with vertical bounds z̃ = 0.02 and z̃ = 0.98 to reduce the influence of top and
bottom boundary layers. The horizontal bounds are taken to be r̃ =0.19 and r̃ = 7.5
to avoid complexity in the vicinity of r̃ = 0. This path is indicated in figure 9(b) by
a thick long dashed line. The vertical and horizontal bounds of the contour were
selected by inspection of the solution at several time instances and the behaviour of
Γ θ was checked to be insensitive to these particular values as long as the contour
encompasses the interface and avoids the boundary layers at the top and bottom
walls and the region close to the axis. Circulation is observed to increase linearly
with time until about t̃ ≈ 2.3. This period corresponds well with the formation of the
vortex rings A1, A2 and A3 at the interface (see figure 6). Then, Γ θ reaches a nearly
stationary value and beyond t̃ ≈ 3.6 it follows a monotonic decay.

A rough estimation of circulation at the interface can be made based on the front
velocity. The jump in the circumferentially averaged radial velocity across the interface
between the light and heavy fluids is proportional to the velocity of the propagating
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Figure 9. (a) Time evolution of Γ θ (solid line) for Re = 8950, together with the three scaling
laws (dashed lines) Γ θ ∼ t̃2β+1 for β = 0, −1/2 and −7/8. (b) Vorticity contours for Re = 8950
at t̃ = 4.03. Solid lines shows negative vorticity contours corresponding to clockwise-rotating
vortices (C1, C2 and C3), and dashed lines indicate positive vorticity corresponding to
anticlockwise-rotating vortices (A1, A2+A3 and A4). The long dashed thick line indicates
the path over which circulation is computed.

heavy front, uF . The constant of proportionality is 1.0 for a deeply submerged current
and is larger for a thicker current. Nevertheless, the net circulation at the interface
can be estimated as

Γ θ ∼ uF lF , (3.3)

where lF is the length of the current. If a uF ∼ t̃ β behaviour is assumed for the front
velocity, then the interface circulation follows a power-law of the form

Γ θ ∼ t̃ 2β+1. (3.4)

It can be readily seen from the equation above that the net circulation at the interfaces
increases with time only for β > −1/2. If the front velocity decays more rapidly (i.e.
for β < −1/2), then net circulation at the interface decreases.

A cylindrical gravity current spreads in several phases (Fay 1969; Fannelop &
Waldman 1971; Hoult 1972; Huppert & Simpson 1980). After a brief acceleration
phase, the current moves at a near constant speed (β ≈ 0) in the slumping phase.
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Figure 10. Front velocity as a function of time, in log-log scale. The transition times between
phases of spreading are qualitatively indicated in the figure for Re = 8950. AP: acceleration
phase, SP: slumping phase, IP: inertial phase, and VP: viscous phase. The inset shows front
location as a function of time. Solid lines: Re = 8950, dashed lines: Re = 3450 and dashed-dot
lines: Re = 895. Circles: data from experiment for Re = 8950. Squares: data from Hallworth
et al. (2001) for Re = 152 000, r0/H = 1.25 and h0/H = 0.965.

Then, the currents enters a self-similar phase in which the effects of flow initiation are
forgotten. Provided Re is large enough to overcome viscous effects the flow first enters
the self-similar inertial phase, which is characterized by a front velocity uF ∼ t̃−1/2

(β ≈ −1/2). Finally, when viscous effects become important the current enters the
viscous phase with uF ∼ t̃−7/8 (β ≈ −7/8) (Huppert 1982). Figure 10 shows a log-log
plot of velocity of the front as a function of time for the three different Re. Also shown
in the figure are the t̃−1/2 and t̃−7/8 power-laws with corrected prefactors presented
in Cantero et al. (2007). Although a perfect constant velocity is not observed, a brief
period of slow variation in velocity is observed, which can be taken to be the slumping
phase of a cylindrical current. In the inertial and viscous phases, the velocity falls off
more rapidly and the computed decay in the front velocity is in reasonable agreement
with what is theoretically predicted. Also shown in the figure are results from present
experiments (to be described below) performed at Re = 8950 corresponding to the
highest Re simulation and those from Hallworth et al. (2001). The comparison between
the present simulations and experiments is very good. The experiments of Hallworth
et al. (2001) are at a higher Re of 152 000 and in a slightly different geometric set up
(r0/H = 1.25 and h0/H = 0.965). This difference may contribute to the slightly higher
front velocity observed in their experiments.

Full-depth cylindrical currents of unit initial radius will pass through the sequence
of slumping, inertial and viscous phases of spreading only when the initial Re of
release is greater than 900. Less intense currents of Re < 900 will directly transition
from the slumping to viscous phase (Cantero et al. 2007). The dimensionless transition
time from the slumping to the self-similar inertial phase, t̃ SI , and from the self-similar
inertial to the viscous phase, t̃ IV , can be estimated as

t̃ SI =
0.67

F 2
c,sl

, t̃ IV = 0.4 Re1/3, (3.5)
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respectively. Here Fc,sl is the approximate constant dimensionless velocity of the
front in the slumping phase, which takes an approximate value of 0.41 at Re = 8950
(Cantero et al. 2007). According to the above equation, for the case of Re = 8950 the
transition times can be estimated to be t̃ SI = 4 and t̃ IV =8.3. The estimate for t̃ SI is
in good agreement with the transition time observed in figure 10. On the other hand,
the estimate for t̃ IV is consistently larger than what is observed in figure 10.

Based on the simple scaling presented in equation (3.4), we expect circulation
to increase linearly with time (Γ θ ∼ t̃) in the slumping phase. During the inertial
phase (β ≈ −1/2) circulation is expected to remain constant and finally in the viscous
phase (β ≈ −7/8) circulation is expected to decay as Γ θ ∼ t̃−3/4. These power-
law behaviours are shown for reference in figure 9(a) and the agreement with the
computed circulation is quite good. However, according to the theoretical estimates,
Γ θ is expected to increase linearly until t̃ ≈ 4, remain approximately constant until
t̃ ≈ 10, and decay as Γ θ ∼ t̃−3/4 from there on. As observed in figure 9(a), the scaling
is followed but the transition times are different. The estimates are based on the
assumption of a constant velocity during the slumping phase. Clearly, this is only
approximately valid and may contribute to the observed difference.

In Cantero et al. (2007) it was observed that the formation of the first vortex
ring (A1) marks the end of the rapid acceleration of the front following the initial
release. We note that the formation of all new anticlockwise vortex rings happens
over t̃ � 5.0, primarily during the slumping phase. At Re = 895 only two vortex rings
(A1 and A5) form during this period and at Re =3450 and 8950 four and five vortex
rings form, respectively. After t̃ ≈ 5.0, i.e. during the inertial and viscous phases, no
new vortices are observed to form in any of the cases simulated. The formation of
vortex A5 coincides with the transition time from the slumping phase. The number
of vortex rings that form is primarily a function of both Re and the aspect ratio
of the volume of release r0/h0, where h0 is the initial height of the release. With
increasing aspect ratio of the volume of release, the time spent in the slumping phase
increases (Cantero et al. 2007) and during this period circulation at the interface
continues to increase. With increasing Re the frequency at which the interface rolls
up to form coherent vortices increases. After the formation of the last vortex ring
(A5) the Kelvin–Helmholtz rolls start to destabilize in the azimuthal directions and
eventually decay to concentrated regions of smaller scale turbulence.

3.4. Vorticity dynamics

The complex dynamics of the vortex rings is controlled by a delicate balance between
production, stretching, tilting, transport and dissipation. This balance also controls
the stability of the ring structure and its eventual breakup into smaller scales. Vorticity
dynamics is dictated by (see for example Wu et al. 2006)

Dω̃

D t̃
= ω̃ · ∇ũ + ∇ρ̃ × e +

1

Re
∇2ω̃, (3.6)

where the first term on the right-hand side is responsible for vortex stretching and
tilting, the second term accounts for baroclinic production of vorticity and the third
term represents vorticity diffusion. Here we focus on the balance of net normal
vorticity across a fixed surface s, which can be expressed as

∂

∂ t̃

∫
S

ω̃ · dS =

∫
S

(−ũ · ∇ω̃) · dS +

∫
S

(ω̃ · ∇ũ) · dS +

∫
S

(∇ρ̃ × e) · dS

+

∫
S

(
1

Re
∇2ω̃

)
· dS. (3.7)
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Figure 11. Time evolution of Γ θ (solid line), Aθ (dotted line), Sθ (dashed line), Bθ

(dash-dotted line) and Dθ (dash-dotted-dotted line) for Re = 8950. The solid line with closed
circle symbols is dΓ θ/dt̃ (see equation (3.8)).

First we choose the surface to be a radial slice through the flow (surface S1 in figure 1
for example). In this case dS = dSeθ and equation (3.7) dictates the evolution of the
azimuthal component of vorticity. The circumferential average can then be computed
for each term to obtain

dΓ θ

dt̃
= Aθ + Sθ + Bθ + Dθ (3.8)

where Aθ , Sθ , Bθ and Dθ are, respectively, advection, stretching and tilting, baroclinic
production and diffusion of Γ θ . Here we take the surface S to be the same as that
bounded by the contour shown in figure 9(b).

Figure 11 shows the time evolution of every term in equation (3.8). The baroclinic
production of azimuthal vorticity, Bθ , is related to the net radial density gradient,
∂ρ̃/∂r̃ , within the domain of integration. We observe Bθ to be always positive and
nearly constant until t̃ ≈ 2. After this time Bθ decays to nearly zero by t̃ ≈ 3.6. Thus,
beyond this time positive and negative ∂ρ̃/∂r̃ are in approximate balance. On the other
hand, the stretching term, Sθ , has a small negative value until t̃ ≈ 2. Subsequently it
increases to peak at t̃ ≈ 3.2 followed by a rapid decay till t̃ ≈ 5. Between t̃ ≈ 5 and 9,
Sθ maintains a small but approximately constant positive value. Afterwards it decays
to negligibly small values.

The baroclinic term is the only true production term. Stretching, titling and
advection mechanisms modify the vorticity distribution, but conserve circulation.
Here Sθ is more than counter-balanced by Aθ . A detailed inspection of the results
shows that the main contribution to Aθ is the inflow of negative azimuthal vorticity
(clockwise-rotating vortices) at the bottom boundary. The inflow is due to the
formation and uplift of clockwise-rotating vortices C1, C2 and C3 (see also figures 4
and 6). This is clearly seen in figure 9(b) which shows vorticity contours for Re = 8950
at the time Aθ peaks, t̃ = 4.03. Observe in figure 11 that while all the other terms
tend to zero more rapidly, Dθ remains negative for an extended period. The slight
increase in Dθ at t̃ < 4 is associated with larger gradients of the azimuthal component
of vorticity induced by tilting and bending of the interface vortex rings due to
instability, which we explore next.

The baroclinic production is limited to only the azimuthal and radial components
of vorticity, while it is only by tilting and bending of the vortex rings that the vertical
component of vorticity is generated. Here we will focus on the evolution of the
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Figure 12. Time evolution of Sr (solid line) and Br (dashed line) for Re = 8950. Inset radial
distributions of S̃r (solid line) and B̃r (dashed line) for Re = 8950 at the time of the peak for
Sr , t̃ ≈ 4.6. Three peaks are observed for S̃r that correspond to the locations of A1+C1+A5,
A2+A3 and A4. This can be verified in figure 6. The distribution of B̃r is more homogeneous
but also shows peaks corresponding to the vortex ring locations.

radial component, but a similar analysis can be performed for the vertical component
as well. Consider equation (3.7) with the surface chosen to be a cylindrical shell
with ds =dSer (surface S2 in figure 1 for example). In this case equation (3.7)
dictates the evolution of the radial component of vorticity. The cylindrical surface
S extends the entire 360◦ with vertical bounds z̃ = 0.02 and z̃ =0.98, thus avoiding
the boundary layers. The most important contributions are from the stretching and
baroclinic production terms; however, the net contribution of both these stretching
and baroclinic production terms is zero since negative and positive radial vorticity
are produced at the same rate. A more reliable measure of the radial components of
these terms is in terms of the root-mean-square (r.m.s.) values given by

S̃r =

√∫
S

[(ω̃ · ∇ũ) · er ]
2 dS, B̃r =

√∫
S

[(∇ρ̃ × e) · er ]
2 dS. (3.9)

The radial average of these quantities can be computed as

Sr =
1

L̃r − 0.19

∫ L̃r

0.19

S̃r dr̃ , Br =
1

L̃r − 0.19

∫ L̃r

0.19

B̃r dr̃ . (3.10)

We note that the above are not precise equivalent of Sθ and Bθ , respectively, since
the radial component measures r.m.s. while the azimuthal component measures the
mean.

Figure 12 shows the time evolution of Sr (solid line) and Br (dashed line) for the
case of Re = 8950. The baroclinic production of radial vorticity comes from azimuthal
density gradients, ∂ρ̃/∂θ , and thus in a pure axisymmetric flow there is no baroclinic
production of radial vorticity. Non-zero azimuthal density gradients are supported
only when axisymmetry is broken through the instability mechanism. In other words,
the vortex rings must first undergo instability along the radial direction for the
production terms to be active. Then, the stretching and tilting contribution to radial
vorticity will be more important than baroclinic production. It can be observed in
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Figure 13. Volumetric rendering of λ̃ci for Re = 8950. The vortex ring structures in the flow
undergo bending and tilting, and eventually break up to small-scale turbulence. See movie 3
available with the online version of the paper.

figure 12(a) that Sr is about an order of magnitude larger than Br . The peak value of
Sr is reached at t̃ ≈ 4.6 which is about the time at which the vortex rings destabilize
and the rapid breakup starts. The inset in figure 12 shows the radial distribution of S̃r

(solid line) and B̃r (dashed line) at t̃ = 4.67 when Sr peaks. The curve for S̃r shows
three clear peaks located at r̃ ≈ 2.3, 1.5 and 0.85. It can be verified in figure 6 that
these peaks correspond to the locations of A1+C1+A5, A2+A3 and A4, respectively.
The destabilization of the vortex rings contributes to the radial component and result
in the rapid breakup of the vortex rings.

Figure 13 shows the volumetric rendering of the swirling strength (see also § 3.7) for
the simulation at Re = 8950. Here the swirling strength, λ̃ci , is defined as the absolute
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value of the imaginary portion of the complex eigenvalues of the local velocity
gradient tensor. As discussed in Zhou et al. (1999) and Chakraborty, Balachandar &
Adrian (2005) the swirling strength provides a clean measure of the compact vortical
structures of the flow. The swirling strength picks out regions of intense vorticity, but
discriminates against planar shear layers, where vorticity is balanced by strain rate. In
this figure the vortex rings can be clearly identified undergoing bending and tilting,
which lead to the final breakup process. A movie with the volumetric rendering of λ̃ci

is available with the online version of the paper (see movie 3).
The understanding of the dynamics of vortex tilting and bending by vortex

stretching can be complemented by the following analysis. Consider, for example,
a vortex tube located at the centre of the vortex ring A1. Let (s, n, b) be the tangent,
principal normal (pointing to the centre of curvature of the vortex tube), and bi-
normal orthonormal basis vectors, respectively. Let υ and χ be the curvature and the
torsion of the vortex tube, respectively, (the torsion of the vortex tube accounts for
the curvature in the vertical-azimuthal plane) and ũ = (ũs, ũn, ũb) the velocity based
on this basis. Then, the stretching term is

ω̃ · ∇ũ = ω̃

[(
∂ũs

∂s
− ũn υ

)
s +

(
∂ũn

∂s
+ ũs υ − ũb χ

)
n +

(
∂ũb

∂s
+ ũn χ

)
b
]
, (3.11)

where ω̃ = |ω̃|. Consider the simplest case in which, ũs = 0, ∂/∂s = 0 (no azimuthal
variation), and that the vortex tube is slightly perturbed (see for example the frame
for t̃ = 2.75 in figure 13) so that the vortex tube has torsion χ �= 0. Consistent with
this last assumption is to assume a small ub �= 0. In this case

ω̃ · ∇ũ = ω̃(−ũn υ s − ũb χ n + ũn χ b). (3.12)

The component along s accounts for the intensification of azimuthal vorticity, and
the components along n and b account for vortex tilting. Once the vortex rings form,
they undergo initially azimuthal stretching which stabilize and intensify them. After
the vortex rings are slightly perturbed, vortex stretching in the radial and vertical
directions produce tilting and bending starting a self-reinforced process that leads to
rapid breakup of the structures (see movie 3). As it is clear from equation (3.12) this
process is proportional to the magnitude of the vorticity, which is intensified by the
azimuthal component of vortex stretching.

3.5. Qualitative experiments

For comparison, we have also performed a laboratory experiment in a rectangular
tank of size 2 m × 2 m × 0.5 m. At one corner of the box a quarter-cylinder of radius
0.165 m is filled with salt water of slightly higher density. The rest of the tank is
filled with fresh water and the two regions are initially separated with a cylindrical
lock. Both the fresh and salt water are maintained to the same height of 0.165 m and
therefore here we consider a full-depth release with r/H =1. The salt water is dyed
with potassium permanganate in order to visualize the front as it propagates out. The
present experiment can thus be considered as a cylindrical current in a 90◦ sector.
The density difference and the height of the layer are chosen to yield Re = 8950,
and thus the results can be directly compared to those for the simulation with the
same Re. The bottom of the tank presents a smooth no-slip surface for the flow and
the free surface at the top presents a slip condition. In the experiment, the heavy
fluid is released in a finite amount of time (the time to lift the gate) and thus the
initial condition is not exactly the same as in the simulations. Despite the differences
in the experimental set-up and the numerical simulation, the results resemble each
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other very closely. Figure 10 shows that the front velocity during the inertial and
viscous phases from the simulations are in very good agreement with those from
the experiment. Also, the lobe-and-cleft pattern is qualitatively well captured by
our simulation. Figure 14 shows the lobe-and-cleft pattern from the experiment for
four time instances when the front is located at approximately r̃ = 3.6, 4.1, 4.5 and
5.0. Each frame shows the complete front (that is the 90◦ circular sector) of the
current in the experiment. Through postprocessing of the images, the lobes and clefts
could be clearly demarcated. Lobes are indicated with arrows to allow a quantitative
comparison with simulation results. Note that the Sc for salt in water is 700, while
the computations employ Sc= 1. The good agreement between numerical results and
experimental observations (to be shown below) offers some justification for findings
that, as long as Sc> O(1), the flow and the lobe-and-cleft pattern are not very sensitive
to the precise value of Sc (Härtel et al. 2000b; Cantero et al. 2006).

3.6. Lobes and clefts

The three-dimensional lobe-and-cleft structure of the advancing front can be seen
in figures 3 and 4 for the larger two Reynolds number simulations considered in
this paper. The azimuthal variation in front propagation continues after the initial
formation of lobes and clefts and, as a result, the number and location of lobes and
clefts constantly change along the front. The front of the current identified by the
contour of ρ̃ =0.015 at the bottom boundary is plotted on the (x̃, ỹ)-plane (top view)
in figure 15. The front location at several equispaced time intervals of �t̃ = 0.354 are
superposed for Re = 3450 in frame (a) and for Re = 8950 in frame (b). The composite
picture provides a clear view of the formation of lobes and clefts and the footprint
the clefts leave on the horizontal (x̃, ỹ)-plane as the front advances over time. At the
beginning (toward the centre of the figure) the front is nearly axisymmetric, but small
random disturbances introduced in the initial condition quickly develop into well-
formed lobe-and-cleft structures. Different instability mechanisms for the formation
of the lobe-and-cleft structure of the front have been proposed in the context of
planar currents (Allen 1971; Simpson 1972; Härtel et al. 2000a). These mechanisms
are likely to be active and responsible for the lobe-and-cleft structure of the cylindrical
currents as well. Even after they are fully formed, the speed of the current continues
to vary along the circumference of the front, thus resulting in repeated splitting and
merging of existing lobes-and-clefts. A complex pattern is etched by the clefts as the
front advances, with repeated formation of new ones and merger between older ones,
which is well captured in figure 15.

Figure 16 shows a snapshot of the near-bed flow at the front of the current for
Re =3450 at t̃ =21. The inset in the figure indicates the location of the horizontal
section at z̃ = 0.04 relative to the front where the flow is shown. The front is visualized
by the density contour of ρ̃ =0.015 at the bottom wall (denoted by a thick solid line).
The vector field shows the horizontal flow (velocity components ũx and ũy) in a fixed
frame of reference, and the contour lines show the vertical flow (solid line: positive ũz,
and dashed line: negative ũz). The vector field shows clearly that the horizontal flow
in the clefts is slower than in the lobes, and that there is an azimuthal component
that is directed from the centre of the lobes into the clefts. This flow pattern had been
postulated by Allen (1985). The contours of vertical velocity show upward flow at the
clefts and downward flow at the lobes. The composition of these results shows that
each lobe has a pair of counter-rotating vortices as originally postulated by Allen
(1985). Some evidence of vortical activity at the front of the current can be seen in
figures 13 and 19 (to be discussed in detail in § 3.7).
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Figure 14. Lobes and clefts from an experiment for Re = 8950 and Sc = 700. Each frame
shows the entire front in the experiment which extends over a circular section of π/2. From top
to bottom, the frames correspond to time instances when the front is locate at r̃ =3.6, 4.1, 4.5
and 5.0, respectively. Through postprocessing the lobe-and-cleft pattern has been demarcated
in the pictures. Each lobe is indicated with an arrow. Locations where a lobe is not clearly
seen and it was not counted (but could have been counted) are marked (+). On the other
hand, locations where a lobe has been counted but was not clearly seen are marked (−). In
this way, an error can be estimated in the number of lobes counted.
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Figure 15. Composite picture of the front location over time. Front visualized by bottom
contours of ρ̃ =0.015. The time separation between contours is �t̃ = 0.354. The details show
several lobe splittings and merges. (a) Re = 3450, and (b) Re = 8950.

Figure 17 shows in detail the lobe-and-cleft pattern observed in the present
experiments performed at Re = 8950. The front of the current is located at r̃ 	 6.5. At
this late time the height of the front and the concentration of potassium permanganate
at the front have decreased enough to permit clear visualization of the lobes and
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Figure 16. Near-bed flow at the front of the current for Re = 3450 at t̃ =21. The inset
indicates the location of the section at z̃ =0.04 relative to the front. The front is visualized
by the corresponding bottom density contour of ρ̃ = 0.015 (thick solid line). The vector field
shows the horizontal flow (velocity components ũx and ũy) and the contour lines show the
vertical flow (solid lines: positive ũz, and dashed lines: negative ũz). The vector field shows
that the horizontal flow in the clefts is slower that in the lobes. It is clear also that there is
an azimuthal flow component from the centre of the lobes into the clefts. The vertical flow
is upward (solid contours) at the cleft locations and downward at the lobes location (dashed
contours).

Figure 17. Detail of lobes and clefts from an experiment for Re =8950 with Sc = 700. The
front is located at r̃ 	 6.5. At this time the concentration of potassium permanganate at the
front has decreased enough to allow the visualization of cleft as streaks of fresh clear water
trapped between the bottom boundary and the current in the near-front region. These streaks
have been marked in the figure with dashed lines to help their visualization. Two mergers of
clefts (marked with arrows) can be observed in the figure. Compare to figure 15.

clefts in the flow: long streaks of fresh clear water trapped between the bottom of the
tank and the current can be clearly identified. These streaks mark the path traversed
by the clefts and have been demarcated in the figure with dashed lines to help their
visualization. The photograph not only provides information on the instantaneous
structure of the front, but also captures the path etched by the clefts in the recent
past. Thus the experimental photograph can be compared with the simulation results
presented in figure 15 and the qualitative features are in agreement. For example,
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Source Re t̃ rF uF hH ReF N90 λ̃l Phase

DNS 3450 3.9 2.4 0.36 0.4 499 16 ± 2 0.24 SP
DNS 3450 5.3 2.9 0.32 0.26 283 19.5 ± 2 0.24 IP
DNS 3450 7.1 3.4 0.26 0.33 291 20.25 ± 2 0.27 IP
DNS 3450 10.6 4.2 0.22 0.354 266 18 ± 2 0.36 IP
DNS 3450 14.1 5 0.2 0.32 221 19.5 ± 2 0.4 IP
DNS 3450 17.7 5.7 0.18 0.27 167 20.5 ± 2 0.44 VP
DNS 3450 21.2 6.3 0.15 0.25 129 22.25 ± 2 0.44 VP
DNS 3450 24.8 6.8 0.12 0.23 99 25 ± 2 0.42 VP
DNS 8950 1.8 1.7 0.41 0.3 1098 26.25 ± 3 0.1 SP
DNS 8950 3.5 2.4 0.38 0.36 1226 30.5 ± 3 0.12 SP
DNS 8950 7.1 3.6 0.29 0.29 774 25.25 ± 3 0.22 IP
DNS 8950 10.6 4.5 0.25 0.32 711 27 ± 3 0.26 IP
DNS 8950 14.1 5.3 0.22 0.28 542 27.25 ± 3 0.31 IP
DNS 8950 17.7 6 0.19 0.27 446 27.5 ± 3 0.34 VP
DNS 8950 20.9 6.6 0.14 0.25 301 28.25 ± 3 0.37 VP
EXP 8950 3.6 25 ± 3 0.23
EXP 8950 4.1 28 ± 3 0.23
EXP 8950 4.5 29 ± 3 0.24
EXP 8950 5 31 ± 3 0.25

Table 1. Quantitative information on the lobe-and-cleft structure. rF is the mean radial
location of the front, uF is the front velocity, hH is the current head height, ReF =Re hH uF

is the local instantaneous Reynolds number of the front, N90 is the mean number of lobes
observed within a 90◦ sector, and λl = πrF /2N90 is the mean wavelength of the lobe. SP:
slumping phase, IP: inertial phase, and VP: viscous phase.

what appears to be the initiation of new clefts and merger between existing clefts
(marked with arrows) can be observed in the figure.

Quantitative information on the lobe-and-cleft structure for both Re = 3450 and
8950 is presented in table 1. At several selected time instances the mean radial
location of the front (rF ), the front velocity (uF ), the current head height (hH ),
the local instantaneous Reynolds number of the front (ReF = Re hHuF ), the mean
number of lobes observed within a 90◦ sector (N90), and the mean wavelength of
the lobe (λ̃l = πrF /2N90) are presented in the table. Also presented is the wavelength
of the lobe extracted from the experiment (see figure 14). The counting of lobes on
figures 14 and 15 is subject to some interpretation, especially at instances of incipient
merger and splitting. In table 1 the number of lobes is therefore presented with an
error. In addition to counting we have also computed both the Fourier spectrum
and two-point correlation of the front location as a function of θ . Owing to the
complex nature of the front, both the spectrum and correlation present a set of broad
peaks. Nevertheless, their results are consistent with those obtained from simple
counting.

The amplitude of disturbance introduced in the initial condition is the same at all
Re, and from figure 15 it can be seen that at the higher Re the disturbance grows
more rapidly and result in earlier formation of the distinct lobe-and-cleft structure.
At both larger Re values the number of lobes initially goes through a brief period
of adjustment where N90 first increases followed by some reduction. After this initial
adjustment the number of lobes continus to increase with time. The increase is more
prominent for Re = 3450, while at the higher Re = 8950 the increase is only modest. At
Re =8950 an increased competition for lobes to grow can be observed. For example,
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one can observe in figure 15 instances where a new lobe is erased through merger
before it reaches the mean size. Furthermore, careful observation of the details in
figure 15(b) shows instances where out of a single lobe multiple smaller lobes are
formed, but only one grows to the mean size. In contrast, at the lower Re = 3450
almost every lobe grows to reach the mean size of a lobe for that radial location as
can be seen from figure 15(a). Typically, a lobe splits into two with both growing over
time. There are, however, lobes merging as can be seen in the details of figure 15(a),
but this process is less intense than in the case of Re = 8950.

Figure 18(a) shows the lobe size normalized by the current head height, hH ,
from the numerical simulations as a function of ReF . The data for Re = 3450 are
presented with solid symbols and those Re = 8950 with open symbols. The data are
also separated by the corresponding phase of spreading. Also plotted in the figure
are experimental data by Simpson (1972) for a planar current and the curve fit
7.4 Re−0.39

F suggested by him. The present simulation Re fall within the range studied
by Simpson, but his measurements were only in the constant-velocity slumping regime.
The present simulation results for the cylindrical currents during the different phases
of spreading do not seem to follow a consistent power law. The wavelength of the
lobe-and-cleft pattern in the slumping phase is in reasonable agreement with those
by Simpson (1972). However, in the inertial and viscous phases our wavelength is
substantially larger. The difference between planar and cylindrical currents could
be the fact that the cylindrical current decays more rapidly due to its quadratic
spreading.

It is of interest to compare the present experimental results with those from the
simulation at Re = 8950. However, in the experiment only top view visualizations
were performed and as a result the instantaneous height of the current’s head is not
available. We, thus, use an equivalent current height as obtained from a simple box-
model-based mass conservation hr =(r0/r)

2. In figure 18(b) we present the wavelength
of the lobe-and-cleft pattern normalized by hr as a function of Rer =ReuF hr . Both
the computational and experimental results are plotted and the agreement is very
good. Interestingly, with this scaling the variation between the different phases of
spreading is smaller.

3.7. Turbulent structures

The complex three-dimensional vortical structure of the current is not entirely
apparent in the density isosurface presented in figure 4. The corresponding isosurface
of swirling strength at the later three times is shown in figure 19: the three-dimensional
vortical structure of the high-Re current is extracted well by λ̃ci . The root-mean-square
swirling strength within the vortical region at the three different times is 1.05, 0.93
and 0.32, respectively. The isosurface of λ̃ci = 2.12 is plotted in figure 19 for the first
two time instances of t̃ =7 and 14. For t̃ =21 the isosurface of λ̃ci = 0.35 is plotted.
Thus, the figure captures only the intense vortical regions of the flow for all the
times displayed. At the first instance shown in figure 19, the strong vortical structures
extracted near the head of the current are associated with the Kelvin–Helmholtz
vortex rings A1 and A5. The effect of lobes and clefts on the vortical structure can be
clearly observed. Two other rings of intense turbulence can be seen. The one centred
around r̃ ≈ 1.75 is associated with the merged vortex ring A2+A3. The final weaker
ring of turbulent structures is associated with vortex ring A4. By t̃ = 14, all except
the vortex ring associated with the front of the current have already decayed and any
turbulence associated with them is no longer captured by λ̃ci = 2.12. However, this
is an artifact of the relatively high threshold of 2.12 set for visualization. In figure
19 for t̃ = 21 the isosurface of λ̃ci = 0.35 shows that active turbulence is still present.
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Figure 18. Lobe size for cylindrical currents as a function of local Re. (a) Lobe size normalized
by current head height, hH , as a function of ReF = ReuF hH . Also in this plot are the
experimental data for planar currents by Simpson (1972) and the best fit to his data. (b) Lobe
size normalized by current head height, hr = (r0/r)

2, as a function of Rer = ReuF hr . Also in
this plot are data from figure 14 for the experiment with Re = 8950. The data from numerical
simulations is differentiated by the corresponding phase of spreading. SP: slumping phase, IP:
inertial phase, and VP: viscous phase.

A low level of turbulence can be observed behind the vortex rings. In addition we
observe turbulence associated with a second vortex ring (A2+A3) located at r̃ ≈ 3.75
and close to the origin.
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ỹ

0.5

0

t  = 210˜

z̃

1
2

3
4

5
6

0
1

2
3

4
5

6

x̃
ỹ

Figure 19. Flow structures visualized by an isosurface of λ̃ci . For t̃ = 7 and 14 the isosurface
of λ̃ci = 2.12 is shown, while for t̃ = 21 the isosurface of λ̃ci = 0.35 is shown. The insets show
detailed views. The inset in frame for t̃ = 14 shows a train of asymmetric hairpin vortices that
have formed behind the front.

Apart from the vortex rings and the lobe-and-cleft structure, the turbulent region
of the flow behind the head is dominated by inclined vortical structures and several
hairpin vortices can be observed (see for example the inset for t̃ =14). These structures
are similar to those observer in a turbulent wall layer, where the vortical structures
are tilted from the wall in the flow direction. In the case of a cylindrical gravity
current, the flow induced is directed radially out. However, in a frame of reference
moving with the front, the flow within the current is radially inward, which explains
the observed orientation of the vortical structures within the current. Similar trains
of inclined vortical structures were observed for the case of planar gravity currents



High-resolution simulations of cylindrical density currents 465

as well (Cantero et al. 2007). The difference, however, is that at the present Re in the
planar current the region of turbulence extended over a large portion of the body of
the current, while in the cylindrical case turbulence is limited to only vortex rings and
the head of the current. The net effect of the vortical structures on the concentration
(density) field is seen in figure 4.

3.8. Subcritical vs. supercritical flow

As seen in figure 6 the presence of vortex rings gives rise to significant local variation in
the height and velocity of the current, inducing regions of subcritical and supercritical
flow. A local Froude number of the flow can be defined as

Fr =
u(r)√
g′ h(r)

(3.13)

where the local height and velocity of the current are defined as

h(r) =

∫ H

0

(
1

2π

∫ 2π

0

ρ(r, θ, z) − ρ0

ρ1 − ρ0

dθ

)
dz, (3.14)

u(r) =

∫ H

0

(
1

2π

∫ 2π

0

u(r, θ, z)
ρ(r, θ, z) − ρ0

ρ1 − ρ0

dθ

)
dz∫ H

0

(
1

2π

∫ 2π

0

ρ(r, θ, z) − ρ0

ρ1 − ρ0

dθ

)
dz

. (3.15)

It must be stressed that Fr is not the dimensionless front velocity, but provides a
dimensionless measure of the local fluid velocity compared to that of the local speed
of wave propagation. The above definitions of u, h and Fr are not unique, and some
caution is required in interpreting regions of Fr> 1 and Fr < 1 as supercritical or
subcritical flow regions. Nevertheless, we observe that with the above definition of Fr,
the head of the current consistently remains very close to critical which is indicative
of a reasonable choice of scales.

Figure 20 shows u (solid line), h (dashed line) and Fr (dash-dot line) as a function of
r̃ at several times from t̃ =1.77 to 21. The current presents a well-defined front, where
h reaches its maximum, and a shallower body and tail. Some of these features are
well-captured by shallow water models (Ungarish & Zemach 2005; Ungarish 2007)
even though they cannot describe the formation and evolution of Kelvin–Helmholtz
vortex rings. At the front of the current u and h approach zero; however, the decrease
of u is slower than that of h and, as a result, the Fr rapidly increases. The supercritical
nature of the flow at the front is consistent with the front-like character (‘shock’)
of the current. The current at all times has an extended shallow body behind the
raised head. At early times during the slumping phase of spreading (t̃ � 5.5) several
undulations are present along the body of the current. It can be observed that h

increases at the location of the vortex rings, while u shows local peaks in regions in
between the vortex rings, where the current is shallower. The combined effect creates
large-amplitude fluctuations in Fr. At later times, as the vortex rings dissipate during
the inertial and viscous phases, the undulations in u, h and Fr diminish.

During the slumping phase of spreading (t̃ � 5.5), Fr> 1 over the entire length of the
current. At intermediate times, during the inertial phase of spreading (5.5 � t̃ � 17),
Fr > 1 only in the region between the vortex rings A1 and A5. Eventually, as the
current decays during the viscous phase, the Froude number becomes subcritical
(Fr < 1) over the entire length of the current, except at the head where the critical
value is maintained at all times. When the front is located at about r̃ = 3.5, the
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Figure 20. Evolution of depth-averaged variables for Re = 8950. Solid line: u, dashed line:
h, and dash-dot line: Fr. The dotted line indicates Fr = 1. Observe that Fr ∼ 1 at the front
location for all time. On the body of the current Fr transitions from larger than 1 to smaller
than 1 at t̃ ∼ 6.

flow presents an elevated front, which produces a region of higher pressure over
2.5 < r̃ < 3.5. The resulting lateral pressure gradient enhances the driving force to
accelerate the front radially outward, but also applies a retarding force to the shallow
body trailing the head of the current. This interaction induces the separation of the
head from the body of the current, which is indicated by the dip in the current height
at r̃ 	 2.9 at t̃ = 10.6. Although subtle, this dip in the height persists at all times,
and can be visualized in the three-dimensional figures as a circular wave at r̃ 	 4
(compare figures 4 and 20). It is interesting to note that there are instances where
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the pressure gradient points radially inward so that the velocity of the current and
correspondingly the Froude number become negative.

4. Summary and conclusions
In this work we present highly resolved three-dimensional simulations of cylindrical

density currents performed at three different Re of 895, 3450, and 8950 with the
objective of addressing the structure and dynamics of cylindrical density currents.
The simulations have been conducted with a de-aliased spectral code, which captures
all relevant length scales present in the flow.

As the front spreads, a shear layer forms between the heavy and the light fluids,
inducing the formation of Kelvin–Helmholtz vortices at the interface. The dynamics
of the interface is highly dependent on the Re of the flow. For the same aspect ratio of
the initial release, we observe an increase of the growth rate and also of the formation
frequency of the Kelvin–Helmholtz vortices with Re. At the lowest Re considered in
this work only two vortex rings form, which remain axisymmetric during the entire
duration of the simulation. The interface stays smooth and nearly horizontal behind
the front. At the larger two Re considered four and five vortex rings form, respectively,
which are destabilized in the azimuthal direction and eventually break up into smaller
scale turbulence. In these cases the interface is very irregular with large undulations
and evolves more dynamically than in the lowest Re case.

The roll-up process of the interface into coherent vortices proceeds only during the
initial slumping phase of spreading. Along with the formation of Kelvin–Helmholtz
vortices at the interface, a series of counter-rotating vortices forms at the bottom
boundary and their eventual interaction results in the lift-up and retardation of the
original Kelvin–Helmholtz vortex ring. The retardation of the leading vortex ring
results in the detachment of the head of the current and in the formation of an
additional vortex ring in the front.

An important consequence of the vortex formation is that the local height and
velocity of propagation of the current vary strongly along its length, and so does
the local Froude number. A local Froude number can be defined in term of depth-
averaged variables to discriminate between regions of sub- and supercritical flow.
Interestingly, the local Froude number remains close to critical for all time at the
head of the current. Some of the features shown on the depth-averaged-variables plots
are captured well by shallow water models (Ungarish 2007). In particular, shallow
water models capture better the front velocity than highly resolved two-dimensional
simulations (Cantero et al. 2007).

Regions of turbulence in the flow are associated with the breakup of the vortex
rings. In the cylindrical geometry the behaviour of the Kelvin–Helmholtz vortices
is somewhat different from that in the planar configuration. As the vortex rings
propagate radially out, they are inherently stretched along the azimuthal direction,
which is expected to provide additional stability. Small disturbances introduced into
the initial condition result in small-amplitude bending and twisting perturbations
of the vortex rings. At Re = 895 these disturbances decay and the vortex rings
remain structurally stable. At the higher two Reynolds numbers of 3450 and 8950,
the instability grows and the vortex rings break up and take a three-dimensional
structure. The stability of the Kelvin–Helmholtz vortices in the planar case at these
Re is qualitatively similar. This suggests that the stretching of the vortex rings in the
cylindrical case does not stabilize the structures sufficiently to greatly alter the critical
Re for the onset of three-dimensionality. In both the full-depth planar and cylindrical
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releases this critical Re is between 895 and 3450. Further investigation is required to
narrow the critical Re range and clarify the influence of circumferential stretching.
The growth of instability results in the lobe-and-cleft structure of the head and in
the breakdown of the vortex rings into coherent vortical structures. These regions are
populated with trains of hairpin vortices tilted toward the axis. Similar findings have
been reported by Cantero et al. (2007) for planar currents; however, in that case the
hairpin vortices are distributed evenly over the head and body of the current.

At the larger two Re, a clear pattern of lobes and clefts develops originally at the
lower part of the leading front, but very rapidly extends to the upper and rear part of
the front. Once formed, the pattern evolves very dynamically, presenting merging of
clefts and splitting of lobes into new ones. The process is similar at both Re; however,
with increasing Re the flow is characterized by smaller scales. The wavelength of the
lobes grows with time as the front spreads and the local Re of the flow decreases.
This is consistent with previous studies on planar currents that show that the most
unstable wavelength decreases with Re (Härtel et al. 2000a). However, for cylindrical
currents the number of lobes is maintained over time and the increase in wavelength
is associated with the increase in circumferential length of the current.

A laboratory experiment was performed for the case of salt water spreading in
quiescent fresh water. The Schmidt number in the experiment was 700, while in the
numerical simulations Sc=1. Although the setting of the experiment was not exactly
as in the simulations, the front velocity, the wavelength of the lobe-and-cleft structures
and their temporal dynamics computed in the numerical simulations are in good agree-
ment with the experimental observations. The general agreement implies that the dy-
namics of the front and its propagation are primarily dictated by Re and the size of the
release and are not greatly influenced by Sc (Härtel et al. 2000b; Cantero et al. 2006).
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Härtel, C., Meiburg, E. & Necker, F. 2000b Analysis and direct numerical simulation of the
flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip
boundaries. J. Fluid Mech. 418, 189–212.

Hoult, D. 1972 Oil spreading in the sea. Annu. Rev. Fluid Mech. 4, 341–368.

Huppert, H. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents
over a rigid horizontal surface. J. Fluid Mech. 121, 43–58.

Huppert, H. & Simpson, J. 1980 The slumping of gravity currents. J. Fluid Mech. 99, 785–799.

Lee, B. & Wilhelmson, R. 1997a The numerical simulation of non-supercell tornadogenesis. Part I:
Initiation and evolution of pretornadic misocyclone circulation along a dry outflow boundary.
J. Atmos. Sci. 54, 32–60.

Lee, B. & Wilhelmson, R. 1997b The numerical simulation of non-supercell tornadogenesis. Part
II: Evolution of a family of tornadoes along a weak outflow boundary. J. Atmos. Sci. 54,
2387–2415.

Marino, B., Thomas, L. & Linden, P. 2005 The front condition for gravity currents. J. Fluid Mech.
536, 49–78.

Martin, J. & Moyce, W. 1952 Part V. An experimental study of the collapse of fluid columns on a
rigid horizontal bottom, in a medium of lower, but comparable, density. Phil. Trans. R. Soc.
Lond. A 244, 325–334.
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